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ABSTRACT: Constitutive equations are derived for the viscoelastic response of amor-
phous glassy polymers in the region of subyield deformations. The model treats an
amorphous polymer as a composite material consisting of an ensemble of flow units,
immobile holes, and clusters of interstitial free volume moving through a network of
long chains to and from voids. Changes in macropressure lead to an increase in the
equilibrium concentration of interstitial free volume that, in turn, induces diffusion of
free-volume elements from holes. The mass flow results in dissolution of voids that is
observed as time-dependent densification of a glassy polymer. It is demonstrated that
the model correctly predicts stress relaxation and a decrease in the specific volume
observed in uniaxial tensile and compressive tests on polycarbonate at room
temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1705–1718, 1999
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INTRODUCTION

This study is concerned with stress–strain rela-
tions for the viscoelastic behavior of amorphous
glassy polymers that account for mechanically in-
duced densification in the subyield region. The
objective is to derive a constitutive model that can
predict the following phenomena observed in uni-
axial relaxation tests.1 (1) Under tensile loads,
the specific volume increases immediately after
application of forces and slowly decreases after-
ward. (2) Under compressive loads, the specific
volume decreases at the initial instant and pro-
ceeds to decrease with time, despite the stress
relaxation.

Time-dependent response of amorphous poly-
mers reflects rearrangement of segments in long
chains. Below the glass transition temperature

Qg, this process requires cooperative dynamics of
chain molecules, when scores of neighboring
strands change their position simultaneously.2

This picture is confirmed by measurements of
dielectric relaxation and NMR spectroscopy in
glass-forming liquids.3,4 A disordered medium is
treated as an ensemble of cells (cooperatively re-
arranging regions or flow units3). Each region is a
globule consisting of long and short chains and
free-volume clusters.5 The characteristic size of a
relaxing region in the vicinity of the Qg amounts
to a few nanometers.6

Relaxation in an amorphous polymer at a tem-
perature Q . Qg is thought of as a diffusion of
rearranging regions on a free-energy hypersur-
face from one local potential well to another.7

According to the concept of ergodicity breaking,8

the ruggedness of the energy landscape increases
with a decrease in temperature, and the phase
space is decomposed into uncoupled cages at the
Qg. Below Qg, a rearranging region cannot leave
its cage, but can only hop to higher energy levels.
The hops occur at random times, and the duration
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of a hop is assessed as a few picoseconds.4 Be-
cause the characteristic time of relaxation in the
a region is about 1 s, flow units spend most time
at the bottom levels of their traps near the points
of minima for their free energies, which implies
that the potential energy of a cage entirely deter-
mines the behavior of a trapped relaxing region.3

According to the transition-state theory,9–11

some liquidlike state exists on the energy land-
scape, where flow units change their configura-
tions. Rearrangement occurs when a relaxing re-
gion reaches this reference state. The depth of a
potential well where a flow unit is located with
respect to the reference state is characterized by
its energy w. For definiteness, we set w 5 0 for
the reference state and w . 0 for an arbitrary
trap.

Two types of free-volume elements are distin-
guished12: (1) a hole (a micro-void frozen in the
network), and (2) an interstitial free volume (clus-
ters of free volume diffusing through a temporary
network to and from holes).

In the Macedo–Litovitz theory,13 immobile
holes model free-volume clusters the potential en-
ergies of which exceed those for thermal fluctua-
tions, whereas interstitial free volumes represent
elements of which barriers for redistribution are
less than local fluctuations of energy caused by
micro-Brownian motion.

Immobile voids are assumed to be randomly
distributed in the bulk medium and filled with a
gas (a mixture of air, monomer units, and mole-
cules of plasticizer). By using observations of
positron annihilation lifetime spectroscopy and
fluorescent probe studies, the average hole radius
R is estimated as several Å (0.35 nm for polycar-
bonate14 and 0.4 nm for polystyrene15). The gas
pressure in a hole p is determined by the Laplace
law

p 5
2Y

R (1)

where Y is the surface tension. Accepting the
value Y 5 0.034 Pa m,16 we obtain p 5 170 MPa
for polystyrene, which substantially exceeds the
yield stress. This implies that external loads prac-
tically do not affect dilatation of holes. This con-
clusion is confirmed fairly well by observations for
polycarbonate in the subyield region.17

We assume that any rearranging region con-
tains only one immobile spherical void, and the
radii of all holes coincide. The latter hypothesis

contradicts some recent observations14,15,18 that
reveal that volumes of voids are randomly distrib-
uted. It is chosen because (i) this assumption es-
sentially simplifies the analysis, and (ii) there is
no reliable way to measure the distribution of
holes.19

Because the average size of a flow unit sub-
stantially exceeds that for a void (at least by an
order), diffusion of free-volume clusters is ana-
lyzed in the vicinity of an individual hole (mod-
eled as a spherical opening in an infinite space).
This means that phenomena associated with mac-
roscopic sizes of specimens are not taken into
account. The latter is confirmed by experimental
data20 demonstrating that diffusion of free vol-
ume in and out of the boundaries of specimens
cannot describe vitrification of polymers.

According to the Williams–Landel–Ferry (WLF)
equation,21 the total free-volume fraction at the
glass transition temperature Qg (when both types
of free-volume clusters are accounted for) is about
2.5%. This implies that the volume fraction of
interstitial free volume is relatively small, and a
glassy polymer may be treated as a dilute solution
of mobile free-volume clusters in a network of
long chains. For isothermal loading, the equilib-
rium concentration of this solution xeq is deter-
mined by macropressure P only,

xeq~P! 5 xeq
0 1 C~P! (2)

where xeq
0 is the equilibrium concentration of in-

terstitial free volume in a stress-free medium,
and the material function C satisfies the condi-
tion

C~P! . 0 ~P Þ 0!, C~0! 5 0 (3)

Formula (3) means that any (positive or negative)
volume deformation of a bulk medium activates a
polymer and increases the equilibrium concentra-
tion of free volume. This contradicts simplified
constitutive models based on the free-volume con-
cept, which presumes that hydrostatic tension de-
creases relaxation times, whereas hydrostatic
compression leads to their growth. In the frame-
work of the free-volume theory,22 assumption (3)
is confirmed fairly well by experimental data for
poly(vinyl chloride), which demonstrate that (i)
relaxation times decrease with the growth of lon-
gitudinal load both in tensile and compressive
tests,23 and (ii) retardation times for densified
specimens exceed those for nondensified sam-
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ples.24 These observations may be explained by
the Struik model,25 according to which subyield
strains in the vicinity of a hole (at tension, as well
as at compression) lead to fracture of the van der
Waals bonds and activate the microcavitation
mechanism.

When external loads are applied to a specimen,
pressure alters and engenders changes in the
equilibrium concentration of interstitial free vol-
ume. The solution becomes subsaturated, which
results in mass flux from voids to flow units. Dif-
fusion of free-volume clusters from holes de-
creases their volume, which is revealed as mechan-
ically induced densification of a glassy polymer.

In tensile relaxation tests on compressible
specimens, an initial positive jump in the specific
volume decreases with time because of stress re-
laxation and diffusion-driven dissolution of voids.
In compressive tests, loads engender an initial
negative jump in the specific volume. Because of
stress relaxation, the stresses decrease, which re-
sults in some growth of the specific volume with
time. On the other hand, diffusion of free-volume
clusters from holes causes a decrease in their
volume. When dissolution of voids driven by dif-
fusive flow dominates volume recovery caused by
stress relaxation, the specific volume of a polymer
decreases with time. This scenario of densifica-
tion is confirmed by experimental data for poly-
carbonate,1 which demonstrate that the rate of
decrease in the specific volume at tension essen-
tially exceeds that at compression. The aim of this
work is to provide a quantitative analysis of this
phenomenon.

KINETICS OF COOPERATIVE
REARRANGEMENT

Rearrangement of flow units is treated as a se-
quence of random hops driven by thermal fluctu-
ations.11 The probability for a flow unit to reach
(in an arbitrary hop) the energy level that exceeds
the bottom level of its trap by v reads

p~v! 5 A exp~2Av!

where A is a material constant.5,27,28 The expo-
nential decay of the probability density for reach-
ing high energy levels is justified by the extreme-
value statistics.29

Because rearranging regions spend most time
at the bottom levels of their potential wells, the

probability of reaching the reference state in an
arbitrary hop is given by

P~w! 5 E
w

`

p~v! dv 5 exp~2Aw!

The average rate of hops G is assumed to de-
pend on the current temperature Q only. Multi-
plying G by the probability of reaching the liquid-
like state in a hop P(w), we arrive at the Eyring
formula30 for the rate of rearrangement for a flow
unit trapped in a cage with potential energy w,

L~w! 5 G exp~2Aw! (4)

Denoted by J0 the concentration of traps (per unit
mass) and by J(t, t, w) the concentration at time
t of traps with potential energy w which have
rearranged before time t # t. The quantity J(t, t,
w) is similar to the distribution function for active
chains in the concept of temporary networks.31

This function entirely determines the rearrange-
ment process. J(t, 0, w) is the number of traps
with potential energy w filled at the initial in-
stant t 5 0 where flow units have not rearranged
until time t; J(t, t, w) is the number of traps with
energy w at time t. The quantity

­J

­t
~t, t, w!ut5t dt

is the number of flow units in traps with energy w
rearranged within the interval [t, t 1 dt], and
the amount

­J

­t
~t, t, w! dt

is the number of these regions that have not
reached the liquidlike state until time t. The
number of initial flow units in traps with energy
w reaching the reference state within the interval
[t, t 1 dt] reads

2
­J

­t ~t, 0, w! dt

and the number of regions in traps with energy w
that rearranged within the interval [t, t 1 dt]
and hop to the reference state within the interval
[t, t 1 dt] is given by
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2
­2J

­t­t
~t, t, w! dt dt

Equating the relative rates of reaching the refer-
ence state to the function L(w), we arrive at the
differential equations

­J

­t ~t, 0, w! 5 2L~w!J~t, 0, w!

­2J

­t­t
~t, t, w! 5 2L~w!

­J

­t
~t, t, w!

The solutions of these equations read

J~t, 0, w! 5 J~0, 0, w!exp@2L~w!t#

­J

­t
~t, t, w! 5

­J

­t
~t, t, w!ut5t exp@2L~w!~t 2 t!#

(5)

The function J(t, t, w) provides a detailed de-
scription of the distribution of traps with various
potential energies. Conventional models5,28 em-
ploy a coarser measure, the probability density p
of traps with potential energy w. Assuming the
function p to be time-independent, we obtain

J~t, t, w! 5 p~w!J0 (6)

The number of flow units (per unit mass) in traps
with potential energy w that reach the liquidlike
state within the interval [t, t 1 dt] reads

2
­J

­t ~t, t, w!ut5t dt 5 L~w!p~w!J0 dt

Because the duration of a hop is neglected, this
equality determines also the number of flow units
in cages with potential energy w that land within
the interval [t, t 1 dt]

­J

­t
~t, t, w!ut5t dt 5 L~w!p~w!J0 dt (7)

Substitution of expressions (6) and (7) into eq. (5)
results in

J~t, 0, w! 5 p~w!J0 exp@2L~w!t#

­J

­t
~t, t, w! 5 L~w!p~w!J0 exp@2L~w!~t 2 t!# (8)

MECHANICAL ENERGY OF AN ENSEMBLE
OF FLOW UNITS

A rearrangement event is modeled as a hop of a
flow unit from the bottom level of its potential
well to the liquidlike state, where the unit forgets
its previous configuration (totally relaxes), fol-
lowed by a landing to the previous trap.28 The
natural (stress-free) configuration of a relaxing
region after landing coincides with the actual con-
figuration of the ensemble of rearranging regions.
This implies that the nominal strain tensor (the
strain tensor for transition from its natural con-
figuration to the actual configuration at the cur-
rent instant t) reads

%̂*~t, t! 5 %̂~t! 2 %̂~t!

where %̂(t) is the strain tensor for transition from
the initial configuration to the actual configura-
tion of a rearranging region, and t is the last
instant before the current time t when the region
was rearranged.

We treat a flow unit as an isotropic linear elas-
tic medium with the mechanical energy

U0~t, t! 5
1
2 $K0@%*~t, t!#2

1 2G0%̂*d~t, t! : %̂*d~t, t!%

where K0 and G0 are analogs of the bulk and
shear moduli for a rearranging region, %* and %̂*d
are the first invariant and the deviatoric part of
the strain tensor %̂*, and the colon denotes con-
volution.

The specific mechanical energy (per unit mass)
of initial flow units that have not reached the
reference state during the interval [0, t) is calcu-
lated as

U~t, 0! 5
1
2 E

0

`

J~t, 0, w! dw@K0%
2~t!

1 2G0%̂d~t! : %̂d~t!#

and the specific mechanical energy of flow units
that landed from the reference state within the
interval [t, t 1 dt] and have not rearranged until
the current time t is given by

dU~t, t! 5
1
2 E

0

` ­J

­t
~t, t, w! dw@K0~%~t! 2 %~t!!2

1 2G0~%̂d~t! 2 %̂d~t!! : ~%̂d~t! 2 %̂d~t!!# dt
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Summing these expressions, we find the specific
mechanical energy of an ensemble of relaxing re-
gions

U1~t! 5
1
2 H @K0%

2~t!

1 2G0%̂d~t! : %̂d~t!# E
0

`

J~t, 0, w! dw

1 E
0

t

@K0~%~t! 2 %~t!!2 1 2G0~%̂d~t!

2 %̂d~t!! : ~%̂d~t! 2 %̂d~t!!# dt

3 E
0

` ­J

­t
~t, t, w! dwJ

With reference to ref. 32, we assume that the
specific energy of interaction between rearrang-
ing regions depends on the first invariant %(t) of
the strain tensor %̂(t). In the framework of linear
elasticity, this energy reads

U2~t! 5
1
2 K*%2~t!

where K* is an analog of the bulk modulus. Sum-
ming the potential energies of traps and the en-
ergy of their interaction, we arrive at the strain
energy density (per unit mass) of a glassy polymer

U~t! 5
1
2 HFK* 1 K0 E

0

`

J~t, 0, w! dwG%2~t!

1 2G0%̂d~t! : %̂d~t! E
0

`

J~t, 0, w! dw

1 E
0

t

@K0~%~t! 2 %~t!!2 1 2G0~%̂d~t!

2 %̂d~t!! : ~%̂d~t! 2 %̂d~t!!# dt

3 E
0

` ­J

­t
~t, t, w! dwJ (9)

CONSTITUTIVE RELATIONS FOR AN
AMORPHOUS POLYMER

Equation (9) expresses the specific mechanical
energy of an amorphous polymer in terms of the

strain tensor for the ensemble of flow units %̂(t),
but not in terms of the strain tensor for the bulk
medium ê(t). According to conventional theories
of mixtures,33 the strain tensor ê(t) for transition
from the initial configuration of the bulk medium
to its actual configuration equals the sum of the
strain tensor for the solid skeleton %̂(t) and the
strain tensor for holes «̂(t):

ê~t! 5 %̂~t! 1 «̂~t! (10)

Because mass transfer across the boundaries of
voids does not change their shapes, the deviatoric
part of the strain tensor «̂(t) vanishes, and

«̂~t! 5
1
3 «~t!Î (11)

where « is the first invariant of «̂, and Î is the unit
tensor. Substitution of expressions (10) and (11)
into eq. (9) results in

U~t! 5
1
2 HFK* 1 K0 E

0

`

J~t, 0, w! dwG ~e~t!

2 «~t!!2 1 2G0ê~t! : ê~t! E
0

`

J~t, 0, w! dw

1 E
0

t

@K0~~e~t! 2 e~t!! 2 ~«~t! 2 «~t!!!2

1 2G0~ê~t! 2 ê~t!! : ~ê~t!

2 ê~t!)] dt E
0

` ­J

­t
~t, t, w! dw (12)

where ê(t) is the deviatoric part of the strain
tensor ê(t).

At small strains, the first invariant s and the
deviatoric part ŝ of the Cauchy stress tensor ŝ are
determined by the formulas31

s~t! 5 3r0

­U~t!
­e~t! ŝ~t! 5 r0

­U~t!
­ê~t!

where r0 is the initial mass density. Substitution
of expression (12) into these equalities results in
the constitutive equations
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s~t! 5 3r0HFK* 1 K0 E
0

`

J~t, t, w! dwG@e~t! 2 «~t!#

2 K0 E
0

t

@e~t! 2 «~t!# dt E
0

` ­J

­t
~t, t, w! dw

ŝ~t! 5 2r0G0F ê~t! E
0

`

J~t, t, w! dw

2 E
0

t

ê~t! dt E
0

` ­J

­t
~t, t, w! dwG (13)

Combining eqs. (8) and (13), bearing in mind that

E
0

`

p~w! dw 5 1 (14)

and introducing the notation

K 5 r0~K* 1 K0J0! G 5 rG0J0

h 5
K0J0

K* 1 K0J0
(15)

we find that

s~t! 5 3KH @e~t! 2 «~t!# 2 h E
0

t

@e~t!

2 «~t!# dt E
0

`

L~w!p~w!exp@2L~w!~t 2 t!# dwJ
ŝ~t! 5 2GH ê~t! 2 E

0

t

ê~t! dt E
0

`

L~w!p~w!

3 exp@2L~w!~t 2 t!# dwJ (16)

For isothermal loading, the distribution of traps
with various potential energies w is described by
the Gaussian function

p~w! 5
1

Î2pS
expF2

~w 2 W!2

2S2 G (17)

where W is the mean potential energy of a relax-
ing region and S is the standard deviation of
energy for a flow unit. According to the physical
meaning of the potential energy w, eq. (17) is
acceptable, provided that the probability of traps
with negative energies is small compared to
unity,

E
2`

0

p~w! dw ! 1 (18)

The random energy model (17) was employed in
the analysis of physical aging in disordered me-
dia.3,11,34 Among other expressions suggested to
fit experimental data, we mention the exponential
function,5,11 and the stretched Gaussian func-
tion.10,35 Substituting expressions (4) and (17)
into eqs. (16) and introducing the notation

z 5 Aw W* 5 AW S* 5 AS

we arrive at the constitutive equations for an
amorphous glassy polymer

s~t! 5 3KH @e~t! 2 «~t!# 2
hG

Î2pS*
E

0

t

@e~t!

2 «~t!# dt E
0

`

expF2S ~z 2 W*!2

2S*
2

1 z 1 G~t 2 t!exp~2z!DG dzJ
ŝ~t! 5 2GH ê~t! 2

G

Î2pS*
E

0

t

ê~t! dtE
0

`

3 expF2S~z 2 W*!2

2S*
2 1 z 1 G~t 2 t!exp~2z!DG dzJ

(19)

Given a function «(t), stress–strain relations
(19) are determined by six material constants: K,
G, h, G, W*, and S*. To reduce the number of
adjustable parameters, we assume in sequel that

h 5 1 (20)
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According to eq. (15), this equality means that the
energy of interaction between flow units is ne-
glected.

Because the volume fraction of immobile holes
L is small, the strain «(t) is given by

«~t! 5 L
V~t! 2 V0

V0
(21)

where V0 and V(t) are average volumes of a void
at the initial and current time, respectively.

DIFFUSION OF INTERSTITIAL FREE
VOLUME

We treat holes as mutually independent and an-
alyze diffusion of interstitial free volume in the
vicinity of an isolated void in an infinite space.
The hole is thought of as a spherical cavity with
the radius R 5 R(t). In spherical coordinates {r,
u, f}, the concentration of interstitial free-volume
x(t, r) (mobile free volume per unit volume of the
bulk medium) satisfies the boundary problem

­x

­t 5
D
r2

­

­r Sr2
­x

­rD x~0, r! 5 xeq
0

x~t, `! 5 xeq
0 x~t, R~t!! 5 x̃eq~t! (22)

where D is a constant diffusivity and x̃eq(t)
5 xeq(P(t)). Mass flux through the boundary of a
hole obeys the Fick law

d}

dt ~t! 5 4pDR2~t!m0

­x

­r ~t, R~t!!

where m0 is the average mass of a mobile free-
volume cluster, }(t) 5 4

3 pr(t) R3(t) is the aver-
age mass of the cavity, and r is the current mass
density of gas in the void. Assuming gas to be
perfect and its motion to be adiabatic, we find that

p
p0 5 S r

r0D k

where p0 and r0 are the pressure and the mass
density of gas before loading, and k is Poisson’s
ratio (the ratio of the specific heat at a fixed pres-
sure to that at a fixed volume). It follows from
these equations that

­x

­r ~t, R~t!! 5
~3k 2 1!r0

3kDm0
F R0

R~t!G
1/k dR

dt ~t! (23)

where R0 is the average radius of a hole before
loading.

The nonlinear initial boundary problem (22)
and (23) is solved by using an approximate
method developed in ref. 26. Omitting technical
details, we arrive at the nonlinear integral equa-
tion for function R(t)

R~t! 5 R0H1 2
3m0

r0~R0!3 ÎD
p E

0

t

C~P~s!!R4~s!

3 FE
s

t

R4~t! dtG21/2

dsJ k/~3k21!

(24)

It follows from eq. (24) that the function

T~t! 5 E
0

t FR~s!

R0 G 4

ds (25)

satisfies the integro-differential equation

dT
dt ~t! 5 H1 2

6m0R0

r0 ÎD
p FC~P~0!!ÎT~t!

1 E
0

t dC

dP ~P~s!!
dP
ds ~s!ÎT~t! 2 T~s! dsGJ 4k/~3k21!

(26)

with the initial condition

T~0! 5 0 (27)

Setting

C~P! 5 BuPu

where B is an adjustable parameter, and bearing
in mind that P 5 2 1

3 s, we present eq. (26) as

dT
dt ~t! 5 H1 2 LF us~0!u ÎT~t!

1 E
0

t

sign s~s!
ds

ds ~s!ÎT~t! 2 T~s! dsGJ 4k/~3k21!

(28)
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where

L 5
2Bm0R0

r0 ÎD
p

It follows from eqs. (21), (25), and (28) that

«~t! 5 LKH1 2 LF us~0!u ÎT~t! 1 E
0

t

sign s~s!

3
ds

ds ~s!ÎT~t! 2 T~s! dsGJ 3k/~3k21!

2 1L (29)

The heat capacities for the hole free volume are
assumed to coincide with those for air, which re-
sults in k 5 1.4. In this case, eqs. (28) and (29) are
determined by two adjustable parameters, L and
L, which are found by fitting observations in uni-
axial tests.

UNIAXIAL EXTENSION OF A BAR

We introduce Cartesian coordinates with unit
vectors e# i and present the strain tensor ê in the
form

ê~t! 5 e1~t!@e# 1e# 1 2 n~t!~e# 2e# 2 1 e# 3e# 3!#

where e1 is the longitudinal strain, e2 is the lat-
eral strain, and n 5 2e2/e1 is Poisson’s ratio. By
substituting this expression into eqs. (19) and
using the boundary condition in stresses on the
lateral surface of the specimen, we find the longi-
tudinal stress

s1~t! 5 2GH @1 1 n~t!#e1~t! 2
G

Î2pS*
E

0

t

3 @1 1 n~t!#e1~t! dt E
0

`

expF2S ~z 2 W*!2

2S*
2

1 z 1 G~t 2 t!exp~2z!DG dzJ (30)

Because s1 is the only nonzero component of the
stress tensor, the first invariant of the stress ten-
sor coincides with the longitudinal stress,

s~t! 5 s1~t! (31)

For an isothermal relaxation test with

e1~t! 5 H 0, t , 0
e1, t $ 0

eq. (30) reads

E~t! 5 2GH @1 1 n~t!# 2
G

Î2pS*
E

0

t

@1 1 n~t!# dt

3 E
0

`

expF2S ~z 2 W*!2

2S*
2 1 z

1 G~t 2 t!exp~2z!DG dzJ (32)

where

E~t! 5
s1~t!

e1
(33)

is the current Young modulus.
It follows from eqs. (19) and (31) that the func-

tion F(t) 5 e(t) 2 «(t) obeys the integral equation

E~t!e1 5 3KKF~t! 2
G

Î2pS*
E

0

t

F~t! dt

3 E
0

`

expH2F ~z 2 W*!2

2S*
2 1 z

1 G~t 2 t!exp~2z!GJ dzL (34)

Comparison of eqs. (32) and (34) implies that

F~t! 5
2G
3K @1 1 n~t!#e1

which results in the formula

«~t! 5 H @1 2 2n~t!# 2
2G
3K @1 1 n~t!#Je1 (35)
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The elastic moduli G and K are expressed in
terms of some average Young’s modulus Eav and
Poisson’s ratio nav by the standard formulas

G 5
Eav

2~1 1 nav!
K 5

Eav

3~1 2 2nav!

Combining these equalities with eq. (35), we ob-
tain

«~t! 5 3e1

nav 2 n~t!
1 1 nav

It follows from this equality and the initial condi-
tion «(0) 5 0 that

nav 5 n~0! (36)

and

«~t! 5 3e1

n~0! 2 n~t!
1 1 n~0!

(37)

Formulas (28), (31), and (33) result in the integro-
differential equation

dT
dt ~t! 5 H1 2 L0F ÎT~t!

1 E
0

t

sign s1~s!
dE*
ds ~s!ÎT~t! 2 T~s! dsGJ 4k/~3k21!

(38)

where L0 5 LE(0)ue1u and

E*~t! 5
E~t!
E~0!

is the dimensionless Young modulus. According to
eq. (29),

log~2«~t!! 5 log L 1 logK1 2 H1 2 L0 F ÎT~t!

1 E
0

t

sign s~s!
dE*
ds ~s!ÎT~t! 2 T~s! dsGJ 3k/~3k21!L

(39)

where log 5 log10.

COMPARISON WITH EXPERIMENTAL DATA

Adjustable parameters in governing equations
are found by matching observations in uniaxial
tensile and compressive relaxation tests for poly-
carbonate (PC GE) at room temperature. For a
detailed description of the experimental proce-
dure, see ref. 1. Because stress–strain relations
(19) are linear, whereas glassy polymers reveal a
nonlinear response in the subyield region, it is
natural to assume that some material parameters
become functions of the longitudinal strain e1.

To determine the parameters G, W*, and S*,
the following approximate technique is employed.
First, Poisson’s ratio n(t) is found from measure-
ments of the volume strain e(t) using the stan-
dard equation

e 5 ~1 2 2n!e1

The function n(t) is approximated by the trun-
cated Prony series

n~t! 5 O
n51

N

nn exp~2lnt! (40)

Given N 5 4 and ln (l1 5 0, l2 5 1022, l3
5 1023, l4 5 1024), the coefficients nn are de-
termined by the least-squares method. After-
wards, the volume strain for voids « is calculated
by eq. (37). The function «(t) is depicted in Fig-
ures 1 and 2 together with its fitting by eqs. (37)
and (40). These figures demonstrate that (i) eq.
(40) with N 5 4 ensures an acceptable matching
of observations, and (ii) Poisson’s ratio n(t)
weakly changes with time t [its relative incre-
ment Dn(t) 5 (n(t) 2 n(0))/n(0) does not exceed
12%]. This implies that the function n(t) in eq.
(32) may be replaced by its average value nav.
According to eqs. (36) and (40), the parameter nav
reads

nav 5 O
n51

N

nn

The average Poisson ratio nav is plotted versus the
longitudinal strain e1 in Figure 3. This figure
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shows that the dependence nav(e1) can be approx-
imated by the linear function

nav~e1! 5 a0 1 a1ue1u (41)

Replacing the function n(t) in eq. (32) by its aver-
age value, we obtain

E~t! 5
Eav

Î2pS*
E

0

`

expH2F ~z 2 W*!2

2S*
2

1 Gt exp~2z!GJ dz (42)

where Eav 5 2G(1 1 nav). To determine the
parameters Eav, G, W*, and S*, we fit experimen-
tal data in relaxation tests with various longitu-
dinal strains e1 by eq. (42). Given G, W*, and S*,
the quantity Eav is found by the least-squares
technique. Afterwards, the values of G, W*, and
S* that minimize the discrepancies between ob-
servations and predictions of eq. (42) are calcu-
lated by using the method of steepest descent.
Numerical analysis demonstrates that the pa-
rameters G and S* are practically independent of
the longitudinal strain e1, whereas the average
Young modulus Eav and the dimensionless mean
energy W* linearly decrease with ue1u,

Eav~e! 5 Eav~0! 2 E9av~0!ue1u

W*~e! 5 W*~0! 2 W9*~0!ue1u (43)

Figures 4 and 5 show that the rate of drop in W*
for tension exceeds that for compression twice,

Figure 1 The volume strain of holes « versus time t s
for uniaxial extension of polycarbonate. Circles: exper-
imental data.1 Solid lines: their approximation by the
model. Curve 1: e1 5 0.01; curve 2: e1 5 0.015; curve 3:
e1 5 0.02; curve 4: e1 5 0.025; curve 5: e1 5 0.03.

Figure 2 The volume strain of holes « versus time t s
for uniaxial compression of polycarbonate. Circles: ex-
perimental data.1 Solid lines: their approximation by
the model. Curve 1: e1 5 0.01; curve 2: e1 5 0.015; curve
3: e1 5 0.02; curve 4: e1 5 0.025; curve 5: e1 5 0.03.

Figure 3 The average Poisson ratio nav versus the
longitudinal strain e1 for polycarbonate. Circles: treat-
ment of observations.1 Solid lines: approximation of
experimental data by eq. (41). Curve 1: extension, a0

5 0.4159 and a1 5 20.0980; curve 2: compression, a0

5 0.4169 and a1 5 0.2060.
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whereas the rates of decline in Eav for tension and
compression are close to one another.

To verify the model, we substitute expression
(40) into eq. (32) and integrate the resulting

equality. Experimental data in tensile and com-
pressive tests are plotted together with their ap-
proximations by the model in Figures 6 and 7.
These figures demonstrate fair agreement be-
tween observations and results of numerical sim-
ulation.

Integro-differential eq. (38) with initial condi-
tion (27) is solved numerically, and the function
«(t) is determined from eq. (39). The adjustable
parameters L0 and L are found from the condition
of the best fit of the curves « 5 «(t). The param-
eter L0 is chosen to ensure that the slope of the
graph log «(log t) coincides with that found from
observations. Then the graph log «(log t) is
shifted along the ordinate axis as a rigid body,
and the parameter L is determined, which pro-
vides the best approximation of the experimental
curve. Observations are plotted together with re-
sults of numerical simulation in Figures 8 and 9,
which demonstrate an acceptable agreement be-
tween experimental data and their prediction.

The parameters L0 and L are depicted versus
the longitudinal strain e1 in Figures 10 and 11.
The figures demonstrate that these quantities are
approximated fairly well by the linear functions of
ue1u,

L0~e1! 5 bue1u log L~e1! 5 c0 1 c1ue1u (44)

Figure 4 The dimensionless mean energy W* versus
the longitudinal strain e1 for polycarbonate. Circles:
treatment of observations.1 Solid lines: approximation
of experimental data by eq. (43). Curve 1: extension,
W*(0) 5 38.9 and W9*(0) 5 840.0; curve 2: compres-
sion, W*(0) 5 25.8 and W9*(0) 5 420.0.

Figure 5 The average Young modulus Eav versus the
longitudinal strain e1 for polycarbonate. Circles: treat-
ment of observations.1 Solid lines: approximation of
experimental data by eq. (43). Curve 1: extension,
Eav(0) 5 2.8525 and E9av(0) 5 11.072; curve 2: compres-
sion, Eav(0) 5 3.3680 and E9av(0) 5 9.0680.

Figure 6 The Young modulus E GPa versus time t s
for polycarbonate in tensile relaxation tests. Circles:
experimental data.1 Solid lines: predictions of the
model with G 5 25.0 s21 and S* 5 30.0. Curve 1: e1

5 0.01; curve 2: e1 5 0.015; curve 3: e1 5 0.02; curve 4:
e1 5 0.025; curve 5: e1 5 0.03.
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It follows from the first equality in eqs. (44) that
the parameter L is independent of the longitudi-
nal strain. Bearing in mind the connection be-
tween L and the self-diffusivity D, we arrive at

the conclusion that the coefficient D is indepen-
dent of mechanical factors in the subyield region.
This assertion is confirmed fairly well by match-
ing observations in relaxation tests. Indeed, ac-

Figure 7 The Young modulus E GPa versus time t s
for polycarbonate in compressive relaxation tests. Cir-
cles: experimental data.1 Solid lines: predictions of the
model with G 5 25.0 s21 and S* 5 30.0. Curve 1: e1

5 0.01; curve 2: e1 5 0.015; curve 3: e1 5 0.02; curve 4:
e1 5 0.025; curve 5: e1 5 0.03; curve 6: e1 5 0.035.

Figure 8 The volume strain of holes « versus time t s
for polycarbonate in tensile relaxation tests. Circles:
experimental data.1 Solid lines: their approximation by
the model. Curve 1: e1 5 0.01; curve 2: e1 5 0.02; curve
3: e1 5 0.03.

Figure 9 The volume strain of holes « versus time t s
for polycarbonate in compressive relaxation tests. Cir-
cles: experimental data.1 Solid lines: their approxima-
tion by the model. Curve 1: e1 5 0.01; curve 2: e1 5 0.02;
curve 3: e1 5 0.03.

Figure 10 The parameter L0 versus the longitudinal
strain e1 for polycarbonate. Circles: treatment of obser-
vations.1 Solid lines: approximation of experimental
data by eq. (44). Curve 1: extension, b 5 1.200; curve
2: compression, b 5 0.729.
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cepting a conventional formula to express the pa-
rameter D in terms of the material viscosity j, we
find that j is independent of strains. On the other
hand, j is proportional to the relaxation time T,
whereas the constancy of T at various longitudi-
nal strains is demonstrated by the data depicted
in Figures 6 and 7.

The second equality in eqs. (44) and Figure 11
reveal that the volume fraction of immobile voids
(free-volume clusters) in a stress-free medium
L(0) is about 6–8%. These values coincide with
measurements of the free-volume fraction in poly-
(vinyl acetate)36 and poly(chlorotrifluoroethyl-
ene)37 obtained by positron-annihilation lifetime
spectroscopy.

CONCLUSIONS

Constitutive equations were derived for mechan-
ically induced densification in amorphous glassy
polymers at isothermal loading. The model com-
bines the theory of traps for disordered media
with the diffusion concept for free-volume clusters
in a network of chain molecules. An amorphous
polymer is treated as a composite material con-
sisting of an ensemble of relaxing regions, inter-

stitial free volume, and immobile voids. Stress–
strain relations (19) are developed for the vis-
coelastic response of glassy polymers at small
strains and nonlinear integro-differential eqs.
(28) and (29) are derived for dilatation caused by
diffusion of free volume to and from holes. Adjust-
able parameters of the model are found by fitting
experimental data for polycarbonate. It is demon-
strated that constitutive equations correctly de-
scribe the viscoelastic behavior of an amorphous
polymer and changes in its specific volume.
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